If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+X-106=0
a = 1; b = 1; c = -106;
Δ = b2-4ac
Δ = 12-4·1·(-106)
Δ = 425
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{425}=\sqrt{25*17}=\sqrt{25}*\sqrt{17}=5\sqrt{17}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-5\sqrt{17}}{2*1}=\frac{-1-5\sqrt{17}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+5\sqrt{17}}{2*1}=\frac{-1+5\sqrt{17}}{2} $
| j=-19 | | 7m+5=13 | | 0.9x-4=-0.1x-6 | | 3x+5-x=3-x+8x | | 2x−2≥=3 | | 3.2+8x=9x-5.1 | | 4-4u-9=1u-17-7u | | –f-4f=200 | | 1+2t-2-1t-3+3t=0 | | 2(a+2)=22.6 | | -1.3x+3=2.3x-2 | | 21=2c+3 | | 61=9a+7 | | 5•(3-x)=0 | | 8=7c-6 | | |3y+3|-31=-7 | | 73=1+8z | | 2x+10=3x+1. | | (11-x)/x=10/12 | | −2y−23=5y+12 | | −2y−23=5y+12. | | -4y=72 | | -9=2-y | | 2e-9=3.6 | | 2-6x=2+5x | | 9x=54+180 | | 2x-2=x+3x=5 | | 3x+8=7x-22 | | x=53x+9 | | x/8-4=6-x/8 | | 3x=-2x-30 | | 2x(+3)=x-4 |